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abstract
This paper deals with the computation of potential flow problem around the two-dimensional hydrofoil without considering the 
effect of free surface by the source based lower and higher order panel methods. Using Green’s second identity the Laplace 
equation is transformed into an integral equation in terms of a distribution of singular solutions, such as sources on the boundaries. 
After satisfying the boundary conditions the integral equation can be written into a matrix form and the matrix is solved by Gaussian 
Elimination procedure. The validity of the computer scheme is examined by comparing the numerical results with the analytical as 
well as experimental results of van de Vooren and NACA 0012 hydrofoils. In comparison to the higher order method, the use of the 
lower order method results in fewer numerical manipulations and hence less computational time. Each method has the problem 
near the trailing edge of the hydrofoil.
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1.0 introduction
Hydrofoil is a winglike structure attached to the hull of a 

boat that raises all or part of the hull out of the water when the 
boat is moving forward, reducing drag. The practical importance 
of hydrodynamic analysis of hydrofoils moving under a free 
surface is very well-known. Thin-foil approximation and the 
Neumann boundary condition were generally used. Giesing and 
Smith [1] distributed the Kelvin wave source on the hydrofoil 
surface, which satisfies the linearised free surface condition, 
and they obtained an integral equation for the source strength by 
applying the kinematic Neumann body boundary condition. This 
integral equation was solved numerically. 

Hough and Moran [2] studied thin-foil approximation 
with linearised free surface condition. They examined the flow 
around flat-plate and cambered-arc hydrofoils. Salvesen and 
Von Kerczek [3,4] first computed steady nonlinear free-surface 
waves due to a two-dimensional hydrofoil and a point vortex 
under the free surface by a finite-difference iterative technique. 
Bai [5] applied the localised finite element numerical technique 
using Galerkin's method. In this method, an integral equation on 
the hydrofoil surface is replaced by a system of equations, over 
a much larger fluid domain but having a much simpler kernel. 
Yeung and Bouger [6] used a hybrid integral equation method 
based on Green's theorem. They satisfied the linearised free 
surface condition and the exact body boundary condition. 

Kennell and Plotkin [7] addressed the potential flow about 
a thin two-dimensional hydrofoil moving with constant velocity 
at a fixed depth beneath a free surface. The thickness-to-chord 
ratio of the hydrofoil and disturbances to the free stream were 

assumed to be small. These small perturbation assumptions were 
used to produce first-and second-order sub problems structured 
to provide consistent approximations to boundary conditions on 
the body and the free surface.

Forbes [8] presented a method for computing two-
dimensional potential flow about a wing with a cusped trailing 
edge immersed beneath the free surface of a running stream of 
infinite depth. The full non-linear boundary conditions were 
retained at the free surface of the fluid and the conditions on 
the hydrofoil were also stated exactly. The problem was solved 
numerically using integral-equation technique combined with 
Newton’s method. Bai and Han [9] applied the localised finite 
element method to solve the nonlinear problem. Wu and Eatock 
Taylor [10] compared the finite element method with the boundary 
element method for the nonlinear time stepping solution of 2-D 
hydrofoils. 

Bal [11] described a potential-based panel method for 
the hydrodynamic analysis of 2-D hydrofoils moving under 
a free surface with constant speed without consideration of 
the cavitation phenomenon. By applying Green’s theorem and 
choosing the value of internal potential as equal to the incoming 
flow potential, an integral equation for the total potential was 
obtained under the potential flow theory. The free surface 
condition was linearised and the Dirichlet boundary condition 
was used instead of the Neumann boundary condition. The 2-D 
hydrofoil was approximated by line panels on which there were 
only constant doublet distributions. The method of image was 
used for satisfying the linearised free surface condition and all 
the terms in the fundamental solution of total potential were 
integrated over a line panel.
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Bal [12] addressed steady cavitating flows around swept 
and V-type hydrofoils under a free surface by using an iterative 
numerical method. The iterative nonlinear numerical method 
based on Green’s theorem allowed separating cavitating 
hydrofoil problem and free surface problem. These two problems 
were solved separately with the effect of one on the other being 
accounted for in an iterative manner. Cavitating hydrofoil 
surface and the free surface were modeled numerically with 
constant strength doublet and constant strength source panel. 
The source strength on the free surface was expressed in terms 
of perturbation potential by applying the free surface condition. 
No radiation condition was enforced for the downstream and 
transverse boundary on the free surface.

Tarafder et. al. [13] presented the Rankine source panel 
for the potential flow around the two-dimensional body moving 
under a free surface. The method of image is used to satisfy the 
linearised free surface condition. In addition, an iterative panel 
method has been applied for surface piercing hydrofoils without 
cavitation in Hsin and Chou [14]. Kim [15] and Ragab [16] 
solved the submerged high speed hydrofoil problem without 
cavitation.

The aim of this paper is to present the basic mathematical 
theory behind the lower and higher order source based panel 
methods and draw a comparison in order to find the suitable 
method for the analysis of the potential flow around the hydrofoils 
without considering the effect of free surface.

2.0 mAtHemAticAl modelling of tHe 
Problem

Consider a hydrofoil fixed in a stream of uniform flow 
with a velocity Q∞ as shown in Figure 1. The depth of water 
from the mean line of the hydrofoil is h. A Cartesian co-ordinate 
system is placed on the free surface and the components of the 
free stream velocity Q∞ in the x-z frame of reference are U∞ and 
W∞ respectively. The angle of attack α is defined as the angle 
between the free stream velocity and the x-axis 

  α = tan-1 ––––

It is assumed that the fluid is inviscid, incompressible and 
the flow irrotational. The perturbation velocity potential φ is 
defined by Φ = φ + Φ∞ 

where, Φ∞ = U∞x + W∞z = x Q∞ cos α + z Q∞ sin α

The total velocity potential Φ∞ satisfies the Laplace 
equation

   ∇2Φ = 0                (1) 

in the fluid domain Ω. The domain Ω is bounded by the 
body surface S

B
, wake surface S

W
 and an outer control surface S∞   

surrounding the body and the wake surface. Now the problem 
for the hydrofoil can be constructed by specifying the boundary 
conditions as follows:

(a) The velocity component normal to the solid boundaries of 
the hydrofoil must be zero and in a frame of reference:

  ∇Φ . n = 0                (2)

where n is a unit normal vector directed outward from the 
fluid domain Ω. 

Figure 1 : Potential flows over a closed body

(b) The disturbance induced by the hydrofoil will decay far 
from the body      
  lim∇Φ = Q∞	 	 	 																							(3)

    r→∞

which is automatically fulfilled by the singular solutions 
such as for the source, doublet or the vortex elements. 

(c) A proper solution for the doublet distribution will have to 
fulfil the Kutta condition at the trailing edge of the lifting 
body such that the potential jump across the wake surface 
S

W
 is the same as the circulation and is constant in the 

streamwise direction on S
W
. If the velocity potential inside 

the body surface S
B
 is defined by Φ

i
 then,

     [∆Φ]on S
w
 = Φ – Φ

i
 = Γ	= Constant

    = ∆ΦT.E.                 (4)

3.0 tHe generAl solution bAsed on 
green’s identity

Applying Green’s Second identity the Laplace equation can 
be transformed into an integral equation as: 

Φ(P) = – ––– ∫s (1n r∇Φ – Φ∇	1n r).n dS
 
in which the boundary S is composed of S

B
, S

W
 and S∞. If 

the point of singularity lies inside the domain Ω, the velocity 
potential can be expressed as

Φ(P) = – ––– ∫sB
 (1n r ∇(Φ	– Φi) – (Φ – Φi) ∇ 1n r) . n dS

W∞

U∞

1
2π

1
2π
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+ ––– ∫sW
 Φ n . ∇ 1n r dS + Φ∞(p)               (5)

If the difference between the external and internal potentials 
or the difference between the normal derivative of the external 
and internal potentials by

 – µ = Φ – Φ
i
                 (6)

  

 – σ = ––– – –––                 (7)

the integral equation (5) can be written as

 Φ(P) = ––– ∫S
B  σ 1n r – µ–––(1n r)  dS

      – ––– ∫S
W  µ ––– (1n r)  dS + Φ∞(P)             (8)

The elements µ and σ in Equations (6) and (7) are called 
the strength of the doublet and source respectively and the minus 
sign is a result of the normal vector n pointing into S

B
. To satisfy 

the Neumann boundary condition of Equation (2) directly, the 
velocity field due to the singularity distribution of Equation (8): 
is used

∇Φ(x, y) = ––– ∫S
B
 σ∇(1n r) dS 

          – ––– ∫S
B + SW

 µ∇  ––– (1n r)   dS + ∇Φ∞																			(9)  
 
If the singularity distribution strengths σ and µ are known, 

then Equation (9) describes the velocity field everywhere (of 
course special treatment is needed when the velocity is evaluated 
on the surface S

B
). Substitution of Equation (9) into the boundary 

condition in Equation (2) results in

  ––– ∫S
B
 σ∇(1n r)dS 

– ––– ∫S
B + 

S
W
 µ∇		–––(1n r)  dS + ∇Φ∞  .n = 0            (10)

This equation is the basis for many numerical solutions and 
should hold for every point on the surface S

B
. To construct a 

numerical solution the surface S is divided into N panels and the 
integration is performed for each panel such that

––– ∑	∫S
B
 σ∇(1n r)dS . n 

– ––– ∑	∫S
B
 µ∇  –––(1n r)  dS . n 

– ––– ∑ ∫S
W
 µ∇  –––(1n r)  dS . n + ∇Φ∞	. n = 0            (11)

3.1 lower order PAnel metHod 
An even simpler lower order panel method (constant 

strength source method) can be derived by setting the doublet 
strength µ to zero in Equation (11). Thus

 

         
 ––– ∑ ∫S

B
	σ∇(1n r)dS . n + ∇Φ∞ . n = 0             (12)

Now the above equation can be written as

∑a
ij
σ

j
 + ∑∇Φ∞ . n = 0              (13)

where,

––– ∫∇(1n r)dS . n
i
 = (u, w)

ij 
.
 
n

i
 = a

ij
             (14)

The influence co-efficient a
ij
 is defined as the velocity 

component normal to the surface. The velocity induced by the 
panel (u, w)

ij will be calculated by using Equations (A10) and 
(A11) of Appendix. Writing the term Φ∞ in terms of velocity 
component, Equation (13) can be written as

∑	a
ij
σ

j
 + ∑(U∞, W∞) . n

i
 = 0              (15)

where (U∞, W∞) = –Q∞ (cos α, sin α)	and n
i
 = (sin α

i
, cos α

i
). 

For the case of symmetric hydrofoil W∞ = 0 and the free stream 
normal velocity component is transferred to the right hand side 
and the following equation can be written as:

RHS
i
 = –U∞ sin α

i
               (16)

At each collocation point the influences of the singularity 
elements (a

ij
) are calculated and then specifying the boundary 

condition for each (i = 1→N)of the collocation points results in 
a set of algebraic equations with the unknown σj (j = 1→N). A 
combination of Equations (15) and (16) will have the form

a11   a12   .   .   .   .   . a1N   σ1        RHS1

a21   a22   .   .   .   .   . a2N   σ2        RHS2

a31   a32   .   .   .   .   . a3N   σ3        RHS3

  .      .    .   .   .   .   .   .   			.            .
  .      .    .   .   .   .   .   .   			.     =     .
  .      .    .   .   .   .   .   .   			.            .
  .      .    .   .   .   .   .   .   			.            .
aN1   aN2   .   .   .   .   . aNN   σN      RHSN             (17)

The above set of algebraic equations has a well-defined 
diagonal and can be solved for σ

j
 by using Gaussian elimination 

method.

3.1.1. calculations of Pressures and loads
Once the strengths of the sources σ

j
 is known, the total 

tangential velocity Q
t
 at each collocation point can be calculated 

as

Q
ti
 =   ∑ (u, w)

ij
 + (U∞,W∞)  . t

i
             (18)

where, t
i
 = (cos α

i
, –sin α

i
). Now the pressure coefficient 

then becomes

 C
p
 = 1 – –––               (19)

Note that this method is derived here for non-lifting shapes 
and the Kutta condition is not used. Consequently, the circulation 
of the hydrofoil will be zero and hence no lift and drag will be 
produced.

1
2π
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1
2π

N

j=1

1
2π

σ
j
(ξ

j+1 – ξ
j
) + (σ

j+1 – σ
j
)(x – ξ

j
)

2π(ξ
j+1 – ξ

j
)

r
j+1

r
j

z

2π

(σ
j+1 – σ

j
)

(ξ
j+1 – ξ

j
)

σ
j
(ξ

j+1 – ξ
j
) + (σ

j+1 – σ
j
)(x – ξ

j
)

2π(ξ
j+1 – ξ

j
)

r
j

r
j+1

z

2π

(σ
j+1 – σ

j
)

(ξ
j+1 – ξ

j
)
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j+1 – ξ

j
)

z

N

j=1
i=1

N

j=1
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2π
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2π

σ1

4π
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2π
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2π
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2π
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x – ξ1
2

r2
1

r2
2

r1

r2

r2
1

r2
2

r2
2

r2
1

r2

r1

3.2 HigHer order PAnel metHod 
The formulation for the higher order panel method (linear 

strength source method) can be derived by setting the doublet 
strength µ to zero in Equation (11) 

         
 ––– ∑ ∫σ∇(1n r)dS. n + ∇Φ∞ . n = 0              (20)

Now the above equation can be written as
 
∑	a

ij
σ

j
 + ∑	∇Φ∞ . n

i
 = 0              (21)

where,

––– ∫∇(1n r)dS . n
i = a

ij
               (22)

The source-only based method will be applicable only to 
non-lifting configurations and is considered to be a more refined 
model than the one based on constant-strength source elements. 
The influence co-efficient a

ij
 will be calculated as follows:

 
Figure 2 : Nomenclature for a linear-strength surface singularity 
element

A segment of the discretised singularity distribution on 
a solid surface is shown in Figure 2. To establish a normal-
velocity boundary condition based method, the induced-velocity 
formulas of a constant and a linear-strength source distribution 
are combined by Equations (A7), (A20), (A8) and (A21) of 
Appendix. The parameters r and θ are shown in Figure 2 and 
the velocity (u, w) measured in the panel local coordinate system 
p(ξ, η) has components

u
p
 = ––– 1n ––– + –––   ––––– 1n––– + (ξ1 – ξ2) +

z(θ2 – θ1)   =   ––– + ––– (x – ξ1)  1n ––– + –––

[(ξ1 – ξ2) + z(θ2 – θ1)]                   (23)
     

W
p
 = ––– (θ2 – θ1) + –––   z 1n––– + 2(x – ξ1)(θ2 – θ1)   

= ––– z 1n ––– + ––– (θ2 – θ1) + –––(x – ξ1)(θ2 – θ1)    (24)

where the subscripts 1 and 2 refer to the panel edges j and 
j+1 respectively. In these Equations σ0 and σ1 are the source 
strength values, as shown in Figure 3. If the strength of σ at the 
beginning of each panel is set equal to the strength of the source 
at the end point of the previous panel (as shown in Figure 2), a 
continuous source distribution is obtained.

 

Figure 3 : Decomposition of a generic linear-strength singularity 
element. 

Now, if the unknowns are the panel edge values of the 
source distribution (σ

j
, σ

j + 1, ....... as in Figure 2) then for N 
surface panels on a closed body the number of unknowns is N+1. 
The relation between the source strengths of the elements shown 
in Figure 3 and the panel edge values is

          
 σ

j
 = σ0               (25a)

         
 σ

j +1 = σ0 + σ1a             (25b)

where a is the panel length, and for convenience the 
induced-velocity equations are rearranged in terms of the panel-
edge surface strengths σ

j
 and σ

j+1 (and the subscripts 1 and 2 are 
replaced  with the j and j+1 subscripts respectively):

u
p
 = –––––––––––––––––––––––– 1n –––              

    
    – ––– ––––––––   ––––––––– + (θ

j+1 – θ
j
)                 (26) 

w
p
 = ––– –––––––– 1n –––              

    
    + –––––––––––––––––––––––– + (θ

j+1 – θ
j
)             (27)

Note that Equations (26) and (27) can be divided into 
velocity induced by σ

j
 and by σ

j+1 such that
         

 (u, w)
p
 = (ua, wa)

p
 + (ub, wb)

p
                         (28)

where the subscript ( )a and ( )b represent the contribution 
due to the leading and trailing singularity strengths, respectively. 
If Equations (26) and (27) are arranged we can separate the ( )a  
part of the velocity components as,

u  = –––––––––– 1n ––– + ––– (––––––)

  ––––––– + (θ
j+1 – θ

j
)             (29a)

r
j

r
j+1

z

2π

σj

ξ
j+1 – ξ

j
	

a

p

σ
j
(ξ

j+1 – x)

2π(ξ
j+1 – ξ

j
)

(ξ
j+1 – ξ

j
)

z
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w  = ––– (––––––––) 1n ––– + ––––––––– (θ
j+1 – θ

j
)  (29b)

from the ( )b part of the velocity components,
    

u  = –––––––––– 1n ––– 

– ––– (––––––)  ––––––– + (θ
j+1 – θ

j
)                (29c)

w  = – ––– (––––––) 1n ––– + ––––––––– (θ
j+1 – θ

j
)   (29d)

To transform these velocity components back to the (x, 
z) coordinates, a rotation by the panel orientation angle α

i
 is 

performed by the following equation:

 u     = cos α
i
    sin α

i
 u

 w -sin α
i
   cosα

i
   w  

p
             (30)

The velocity at each collocation point is influenced by the 
two edges of the j-th panel. Thus, adding the influence of the 
(j+1)-th panel and each subsequent panel gives the local induced 
velocity at the first collocation point

 (u, w)1    =  (ua, wa)11σ1 + [(ub, wb)11 + (ua, wa)12]σ2

           + [(ub, wb)12	+ [(ua, wa)13] σ3 + ........
           = [(ub, wb)1,N-1 +	[(u

a, wa)1N
]σ

N
 + (ub, wb)1N

σ
N+1

This equation can be reduced to a form

(u, w)1 = (u, w)11σ1 + (u, w)12σ2 + ...... + (u, w)1N+1 σ N+1 

such that for the first and last terms

(u, w)11 = (ua, wa)11              (31a)

(u, w)1,N+1 = (ub, wb)1N
σ

N+1                     (31b)

and for all other terms

(u, w)1,j = [(ub, wb)1,j–1	+	(u
a, wa)1,j] σj

            (31c)

From this point the procedure is similar to the constant-
strength source method. The influence coefficient is calculated 
when σ

j
 = 1 and

a
ij = (u, w)

ij
	. n

i
               (32)

For each collocation point there will be N+1 such coefficients 
and unknowns σ

j
.  The free-stream normal velocity components 

RHS
i
 is found at the collocation point

RHS
i
 = –U∞ sin α

i                        (33)

where α
i
 is the panel inclination angle. Specification of 

the boundary condition for each (i = 1 → N) of the collocation 
points result in N linear algebraic equations with the unknowns 
σj (j = 1 → N+1). The additional equation can be found by 
requiring that the flow leaves parallel to the trailing edge: thus

σ1 + σ
N+1 = 0               (34)

Another option that will yield similar results is to establish 
an additional collocation point slightly behind the trailing edge 
and require that the velocity will be zero there (stagnation point 
for finite-angle trailing edges). A combination of Equation (21), 

(33) and (34) with the N boundary conditions result in following 
(N+1) linear equations:

a11   a12   .   .   .   .   .  a1.N+1     σ1        RHS1

a21   a22   .   .   .   .   .  a2.N+1     σ2        RHS2

a31   a32   .   .   .   .   .  a3.N+1     σ3        RHS3

  .      .    .   .   .   .   .     .   							.            .
  .      .    .   .   .   .   .     .   							.     =     .
  .      .    .   .   .   .   .     .   							.            .
 aN1   aN2 .   .   .   .   .  aN.N+1    σN        RHSN  
  1     0   .   .   .   .   .     1       σN+1         0            (35)

The above set of algebraic equations has a well-defined 
diagonal and can be solved for σ

j
 by using standard methods of 

linear algebra.

3.2.1. calculation of Pressures and loads

Once the strength of the sources σ
j
 is known, the velocity 

at each collocation point can be calculated and the pressure 
coefficient can be calculated by using Equation (19).

4.0 results And discussions
The numerical algorithms outlined before have been applied 

to a number of hydrofoils such as van de Vooren and NACA 0012 
in order to analyse the hydrodynamic characteristics at various 
depths of water.  In the first case, source based lower order panel 
method with Neumann boundary condition is applied to the 
15% thick symmetric van de Vooren hydrofoil with an angle of 
attack, α = 0°. The hydrofoil is discretised by M = 90 panels. 
The predicted pressure on van de Vooren hydrofoil is compared 
with its analytical results in Figure 4 and the agreement is quite 
satisfactory. The pressures on this hydrofoil at various depths of 
water such as   respectively are plotted in Figure 5 and we can see 
that the effect of the depths of water is insignificant. Discretising 
the hydrofoil by 40, 90 and 180 panels respectively, source based 
lower order panel method has also been applied to van de Vooren 
hydrofoil at a depth of water h/c = 0.4. Note that this method 
is derived here for nonlifting shapes and the Kutta condition is 
not used. Consequently, the circulation of the hydrofoil will be 
zero and hence no lift and drag will be produced. However, the 
pressure distribution is well predicted in Figure 6 and they are 
convergent to one another. The numerical solution presented 
here does not assume a symmetric solution. But it appears that 
the solution is symmetric about the x-axis and the number of 
unknowns can be reduced by M/2 by a minor modification in the 
process of influence co-efficient.

A comparison of pressure distribution on van de Vooren 
hydrofoil with an angle of attack, α = 0° calculated from source 
based higher order panel method is drawn in Figure 7. It is 
noted that each computational method depends on the grid and 
on various other parameters. Therefore, each technique must be 
validated first before it can be applied to unknown cases. The 
sensitivity of the linear higher order panel method with Neumann 
boundary condition is presented in Figure 8. Both methods will 
have problems near the trailing edge. The calculated values of 
C

p
 on NACA 0012 hydrofoil are also compared with Fletcher’s 

numerical as well as Amick’s experimental results (Fletcher, 
1991) in Figure 9. The agreement between the experimental 

r
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result and that of lower order method is better in compared 
to higher order method. Higher order method can achieve a 
prescribed level of accuracy but the code is more complicated 
and the required amount of computation per panel is higher. 
However, the relative merits of low and high order methods 
depend on the specific problem and on the fundamental method 
being used.

The computation times measured in seconds (of Intel 
Celeron computer, 2.00 GHZ and 248 MB of RAM) versus 
the number of panels is presented in Figure 10. These data 
indicate that the lower order panel method is the faster and 
computational effort increases with increasing the order of the 
method.

Figure 4 : Pressure on van de Vooren hydrofoil at h/c = 0 by the lower 
order panel method

Figure 5 : Water depth effect on the pressure on van de Vooren 
hydrofoil by the lower order panel method 

Figure 6 : Panel size effect on the pressure on van de Vooren hydrofoil 
at h/c = 0.4 by the lower order panel method 

Figure 7 : Pressure on van de Vooren hydrofoil at h/c = 0 by the 
higher order panel method

 
 

  
Figure 8 : Panel size effect on the pressure on van de Vooren hydrofoil 
at h/c = 0 by the higher order panel method
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 Figure 9 : Comparison between calculated and experimental Pressures 
on NACA 0012 hydrofoils at h/c = 0

Figure 10 : Comparison of CPU time for Lower and higher order 
panel methods

APPendix 

influence co-efficient

lower order Panel method 
Consider a source distribution along the ξ axis as shown in 

Figure 11. It is assumed that the source strength per unit length 
is constant such that σ (ξ) = σ = const. The influence of this 
distribution at a point P (x, z) is an integral of the influences of 
the point elements along the segment ξ1 – ξ2 (see Islam, 2008):

                      
 Φ	= ––– ∫ 1n    (x – ξ)2 + z2   dξ				 																								(A1)

Differentiating Equation (A1) with respect to x and z 

         
 u(ξ, η) = ––– ∫ –––––––––– dξ            (A2)

 

w(ξ, η) = ––– ∫ –––––––––– dξ            (A3)

Figure 11: Constant-strength source distributions along the x - axis. 

The integral for the velocity potential in terms of the corner 
points (ξ1, 0) and (ξ2, 0) of a generic panel element as shown in 
Figure 12, the distances r1, r2 and the angles θ1, θ2 it becomes

Φ = ––– [(x – ξ1) 1n r2
1 – (x – ξ2) 1n r2

2 + 2z(θ2 – θ1)] (A4)

where

θ
k
 = tan-1 –––––  k = 1, 2             (A5)

σ
2π

ξ2

ξ1

σ
2π

x – ξ
(x – ξ)2 + z2

ξ2

ξ1

σ
2π

z
(x – ξ)2 + z2

ξ2

ξ1

5.0 conclusions
The paper deals with the source based lower and higher 

order panel methods for computing the potential flow around the 
hydrofoil moving with a uniform speed in an unbounded fluid. 
The following conclusions can be drawn from the present study:

(i) In general, the use of the lower order method results in fewer 
numerical manipulations and hence less computational 
time. The use of higher order method requires more 
computational effort and is justified when the velocity near 
the body is continuous. 

(ii) Each computational method depends on the grid and on 
various other parameters. Therefore, each technique must 
be validated before it is applied to unknown cases. 

(iii) Both the methods have the problems near the cusped trailing 
edge of the hydrofoil. Such problems may be avoided by 
modeling a finite angle there (instead of zero angle) and 
this may be achieved by simply having larger trailing-edge 
panels. 

(iv) The agreement between the present numerical results 
with the analytical as well as experimental results is quite 
satisfactory. 

σ
4π

z
x – ξ

k
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r
k
 =   (x – ξ

k
)2 + z2  k = 1, 2             (A6)

Figure 12 : Nomenclature for the panel influence coefficient 
derivation

The velocity components are obtained from Equation (A2) 
and (A3) as

         
 u = ––– 1n ––– = ––– 1n –––             (A7)

w = ––– (θ2 – θ1)              (A8)

Returning to x, z variables we obtain

Φ = ––– {(x – ξ1) 1n[(x – ξ1)
2 + z2] 

– (x – ξ2) 1n[(x – ξ2)
2 + z2

+ 2z (tan-1 ––––– – tan-1 –––––)}               (A9)
                    

 
u = ––– 1n ––––––––––             (A10)
                    

 
w = –––  tan-1 ––––– – tan-1 –––––           (A11)

HigHer order PAnel metHod
Let us consider a linear source distribution along the ξ 

axis (ξ1<ξ<ξ2) with a source strength of σ(ξ) = σ0 + σ1(ξ-ξ1), as 
shown in Figure 13. Based on the principle of superposition, this 
can be divided into a constant-strength element and a linearly 
varying strength element with the strength σ(ξ) = σ1ξ. Therefore, 
for the general case as shown in the left-hand side of Figure 13, 
the results of this section must be added to the results of the 
constant-strength source element.

        

Figure 13 : Decomposition of a generic linear strength element to 
constant-strength and linearly varying strength elements

  
Figure 14 : Nomenclature for calculating the influence of linearly 
varying strength source

The influence of the simplified linear distribution source 
element, where σ(ξ) = σ1 ξ, at a point P is obtained by integrating 
the influences of the point elements between ξ1 and ξ2 (see Figure 
14):

         
 Φ = ––– ∫ξ 1n    (x – ξ)2 + z2 dξ	 	 									(A12)

         

u = ––– ∫ –––––––––– dξ            (A13)

         

w = ––– ∫ –––––––––– dξ            (A14)

The integration of the velocity potential can be represented 
as 

Φ = –––  –––––––––– 1n r1
2 – –––––––––– 1n r2

2

+ 2xz(θ2 – θ1) – x(ξ2 – ξ1)            (A15)

where r1, r2, θ1 and θ2 are defined by Equations (A5) and (A6). 
The velocity components are obtained by Equations (A13) and 
(A14) as follows: 

       
u = –––  –– 1n –– + (ξ1 – ξ2) + z(θ2 – θ1)          (A16)
         

 
w = –––  z 1n ––– + 2x(θ2 – θ1)           (A17)

Substitution of r
k
 and θ

k
 from Equations (A6) and (A7) 

results in
  
Φ = –––   ––––––––– 1n [(x – ξ1)

2 + z2] 

– –––––––––– 1n [(x – ξ2)
2 + z2] 

+ 2xz(tan-1 ––––– – tan-1 –––––) – x(ξ2 – ξ1)          (A18)
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u = –––  –– 1n –––––––––– + (ξ1 – ξ2)  

   + z   tan-1 ––––– – tan-1 –––––           (A19)
     

w = –––   z 1n ––––––––––  

    + 2x   tan-1 ––––– – tan-1 –––––           (A20)
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